Chapter 3: Laws of Motion 7. The linear momentum of an object of mass m

moving with velocity v is

1. Which of the following is a contact force?

(a) Gravitational force

	(b)	Electrostatic force			(a)	m/v	(b) v/m
	(c)	Magnetic force			(c)	$(mv)^{-1}$	(d) mv
	(d)	Frictional force		8.	Am	ong the following, c	choose the object possessing
2	. Ide	Identify the non-contact force among the following			the highest momentum:		
		options.			(a)	Mass of 8 kg mov	ving with velocity 6 ms ⁻¹
	(a)	Force of friction			(b)	Mass of 4 kg mov	ving with velocity 11 ms-1
	(b)				(c)	Mass of 10 kg mo	oving with velocity 4 ms-1
	(c)) Tension in a string			(d)	Mass of 45 kg mo	oving with velocity 1 ms ⁻¹
	(d)				9. The unit of linear momentum is		
3.		e property of inertia is more in			(a)		(b) kg m s ⁻²
		A horse cart	(b) A car			$N s^{-1}$	$(d) \text{ kg}^2 \text{ m s}^{-1}$
		A truck	(d) A toy car	10.			
4.	A tennis ball and a cricket ball, both are stationary. To start motion in both the balls			A player catches a cricket ball of mass 0.150 k moving at a rate of 20 m s ⁻¹ and completes this			
		a less force is required for the cricket ball than for the tennis ball a less force is required for the tennis ball			process in 0.1 s. The force exerted by the ball of the hand of the player is		
	(b)			9 3		0.3 N	(b) 300 N
	(0)	than for the cricket l	ball		(c)	30 N	(d) 150 N
	(c)	(c) same force is required for both the balls(d) nothing can be said.			The correct form of Newton's second law is		
	(d)				(a)	$F = {\Delta p}/{\Delta t}$	
5.	A fo	orce is required to				$F = m \Delta v / \{\Delta t\} \Delta t \Delta t$	\v
5.	(a) change the state of motion or state of rest			- 38 -		$F = v \Delta m/\Delta t$	
		of an object				F = mv	
		keep the velocity of object constant			The	acceleration produ	ced in an object by a forc
		keep the object statio			of gi	iven magnitude der	needs on
					(a)	size of the object	sends on
		tify the unit of force:			(b)	mass of the object	DIVE SUL SI
		kg m s ⁻¹	(b) kg m s ²		(c)	shape of the object	
	(c) 1	kg m s	(d) kg m s ^{-2}		(d)	size and shape of	the abi
						onupe of	me object

13. Newton's third law: (a) defines the force quantitatively (b) defines the force qualitatively (c) gives the direction of force

- (d) explains the way a force acts on an object

 14. Action and reaction act on the
 - (a) same object in opposite directions
 - (b) same object in same direction
 - (c) different objects in opposite directions
 - (d) different objects, but in the same direction
- 15. The gravitational force between two bodies is
 - (a) always repulsive
 - (b) always attractive
 - (c) attractive only at large distances
 - (d) repulsive only at large distances.
- 16. The value of universal gravitational constant, G is
 - (a) 9.8 N m² kg⁻²
 - (b) $6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$
 - (c) $6.67 \times 10^{-11} \text{ m s}^{-2}$
 - (d) 6.67 N kg⁻¹
- 17. Value of G on surface of earth is 6.673×10^{-11} N m² kg⁻², then value of G on surface of Mars will be
 - (a) $12 \times 6.673 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$
 - (b) $6.673 / 12 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$
 - (c) $6.673 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$
 - (d) $6.673 / 6 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$
- 18. Identify the force of attraction between two masses each of 1 kg kept at a separation of 1 m.
 - (a) 9.8 N
- (b) 6.7 N
- (c) 980 N
- (d) $6.7 \times 10^{-11} \text{ N}$
- 19. Identify the phenomena's which were successfully explained by the law of gravitation.
 - (i) Motion of moon around the earth
 - (ii) Motion of an aeroplane
 - (iii) Force that binds us to the earth
 - (iv) Rotation of blades in a ceiling fan
 - (a) (ii), (iv)
- (b) (iv), (i)
- (c) (iii), (iv)
- (d) (i), (iii)
- 20. An object is projected vertically upward with an initial velocity u. If acceleration due to gravity is g, the time for which it remains in air, is
 - (a) u/g

(b) ug

(c) 2u/g

(d) u/2g

- 21. An object falling freely from rest reaches ground in 2 s. If acceleration due to gravity is 9.8 m s⁻², the velocity of the object on reaching the ground will be
 - (a) 9.8 m s⁻¹
- (b) 4.9 m s⁻¹
- (c) 19.6 m s⁻¹
- (d) 0
- 22. An object is moving along a straight path in an accelerated motion. Choose the correct statement from the following:
 - (a) Its speed keeps changing
 - (b) Its velocity always changes
 - (c) It always goes away from the earth
 - (d) A force is always acting on it
- 23. The acceleration of free fall on the Moon is 1/6 of the acceleration of free fall on the Earth. Two pieces of rock, A and B, have the same volume. A is placed on the Moon and B is placed on Earth. If both of them have the same weight, what is the ratio of A's density to B's density?
 - (a) Cannot be determined
 - (b) 1:6
 - (c) 6:1
 - (d) 1:1
- 24. According to the third law of motion, action and reaction
 - (a) act on either body at normal to each other
 - (b) have same magnitude and directions
 - (c) always act on different bodies in opposite directions
 - (d) always act on the same body
- 25. A goalkeeper in a game of football pulls his hands backwards after holding the ball shot at the goal. This enables the goal keeper to
 - (a) increase the rate of change of momentum
 - (b) decrease the rate of change of momentum
 - (c) reduce the force exerted by the ball on hands
 - (d) exert larger force on the ball
- 26. The inertia of an object tends to cause the object
 - (a) to decrease its speed
 - (b) to increase its speed
 - (c) to decelerate due to friction
 - (d) to resist any change in its state of motion
- 27. Inertia is the resistance of an object to any change in its state of motion, including a change in direction. Which property is a measure of the body's inertia?
 - (a) Weight
- (b) Density
- (c) Volume
- (d) Mass

Chapter 7: Sound

- 1. The speed of sound in air at 0 °C is nearly:
 - (a) 450 m s⁻¹
- (b) 330 m s⁻¹
- (c) 5100 m s⁻¹
- (d) 1450 m s⁻¹
- Sound propagates in air in the form of:
 - (a) Longitudinal wave
 - (b) Transverse wave
 - (c) Both longitudinal and transverse wave
 - (d) Neither longitudinal nor transverse wave
- 3. The speed of light in air is:
 - (a) $3 \times 10^8 \text{ m s}^{-1}$
- (b) 330 m s⁻¹
- (a) 5100 m s⁻¹
- (a) $3 \times 10^{10} \text{ m s}^{-1}$
- 4. A man can hear the sound of frequency:
 - (a) 1 Hz
- (b) 1000 Hz
- (c) 200 kHz
- (d) 5 MHz
- 5. Identify the points shown in the diagram of a wave travelling on the pond which are one wavelength apart?

- (a) P and R
- (b) Q and T
- (c) Q and S
- (d) S and T
- 6. The properties of ultrasound that make it useful, are:
 - (a) High power and high speed
 - (b) High power and good directivity
 - (c) High frequency and high speed
 - (d) High frequency and bending around the objects
- SONAR makes use of:
 - (a) Infrasonic sound
- (b) Ultrasound
- (c) Ordinary sound
- (d) Light
- 8. Choose the correct statement from the following:
 - (a) Sound and light both require medium for propagation
 - (b) Sound can travel in vacuum, but light cannot
 - (c) Sound needs medium, but light does not need medium for its propagation
 - (d) Sound and light both can travel in vacuum

- 9. Select the correct unit for wavelength from the
 - (a) nm

(b) Hz

(c) dB

- (d) ns
- 10. Choose the correct statement about the speed of sound:
 - (a) It travels fastest in liquids
 - (b) It travels fastest in a vacuum
 - (c) It travels fastest in solid
 - (d) It travels fastest in gases
- 11. Why do we hear sound when a ball strikes the floor?
 - (a) the air particles from the floor flow into our ears.
 - (b) the wavelength of the sound wave is large enough to produce the sound.
 - the air particles from the floor vibrate and produce longitudinal waves which reach into our ears through the air
 - (d) the air particles from the floor vibrate and produce transverse waves to flow which reach into our ears through the air
- 12. A flash of lightning and the corresponding thunderclap are detected 5 s apart. Calculation reveals that the lightning struck about 1600 m away. Identify the assumption on which the calculation is based:
 - (a) Light travels 320 m s⁻¹ faster than sound
 - (b) Sound reaches us almost instantaneously, but light travels at 320 m s⁻¹
 - (c) Light reaches us almost instantaneously, but sound travels at 320 m s⁻¹
 - The sound of the thunder was emitted 5 s after the flash
- 13. A star explodes in outer space. Choose the correct option for the waves from the exploding star which do not reach the Earth?
 - (a) Infra-red
- (b) Sound
- (c) Light
- (d) Radio
- 14. Choose the true statements for sound from the following:
 - A. Sound waves are produced by vibration.
 - B. Sound waves have an approximate speed of 280 m s⁻¹

- C. Sound waves are longitudinal waves.
- (a) A and C only
- (b) B and C only
- (c) A and B only
- (d) A, B and C
- 15. John blows a whistle that has a frequency of 10000 Hz. John's friend Roshni cannot hear the sound from the whistle while she has normal hearing, What could be a reason why she cannot hear the sound?
 - The amplitude is too large.
 - The amplitude is too small.
 - The frequency is too high.
 - The frequency is too low.
- 16. The speed of sound in $air(v_a)$, water (v_w) and steel (v_s) is different. Choose the correct option showing the speed of sound in descending order:
 - (a) speed of sound in $air(v_a)$, speed of sound in $steel(v_s)$, speed of sound in water(v_w)
 - (b) speed of sound in $air(v_a)$, speed of sound in water(v_w), speed of sound in steel(v_s)
 - (c) speed of sound in water(v,), speed of sound in $air(v_a)$, speed of sound in $steel(v_s)$
 - (d) speed of sound in steel(v_s), speed of sound in water(v_w), speed of sound in air(v_a)
- Ultrasound is used in a hospital to scan a patient. Ultrasound refracts at the boundary between muscle and bone because it travels at a greater speed in bone. Which change takes place when the ultrasound travels from muscle into bone?
 - The frequency of the wave decreases.
 - The frequency of the wave increases.
 - The wavelength of the wave decreases.
 - (d) The wavelength of the wave increases.
- A pulse of sound is produced at the bottom of a boat which travels through the water. It is reflected from a shoal of fish and reaches the boat again after 1.4 s. The speed of sound in the water is 1500 m/s. How far below the bottom of the boat is from the shoal of fish?

Shoal of fish.

- (a) 525 m
- (b) 1050 m
- 2100 m
- (d) 4200 m

- 19. Which range is approximately correct for the audio frequencies that can be detected by a healthy human ear?
 - (a) 2 Hz to 2000 Hz
 - (b) 2 Hz to 20000 Hz
 - (c) 20 Hz to 2000 Hz
 - (d) 20 Hz to 20000 Hz
- 20. Which waves are longitudinal?
 - (a) light waves from a lamp
 - (b) microwaves in an oven
 - (c) water waves on the surface of a pond
 - (d) sound waves from a trumpet
- 21. The diagram shows four waves drawn to the same scale.

Which statement is correct?

- (a) The amplitude of wave W₁ is the same as the amplitude of wave W3.
- The amplitude of wave W4 is double the amplitude of wave W2.
- The wavelength of wave W2 is double the wavelength of wave W1.
- The wavelength of wave W4 is the same as the wavelength of wave W2.